被災した建物を実例とした 日本の応急復旧技術の紹介

東北大学 Tohoku University 迫田丈志 Joji Sakuta

京都大学 Kyoto University 坂下雅信 Masanobu Sakashita

日本の応急復旧の流れ

- ①応急危険度判定 → 危険
- ②応急措置 → 軸力支持、水平抵抗力の確保
- ③被災度区分判定 → 大破
- ④準備計算 → 図面作成、建物重量
- ⑤構造特性係数 Is の算定 → 強度指標C 靭性指標F
- ⑥復旧計画 → 恒久補修、恒久補強

被災建物の概要

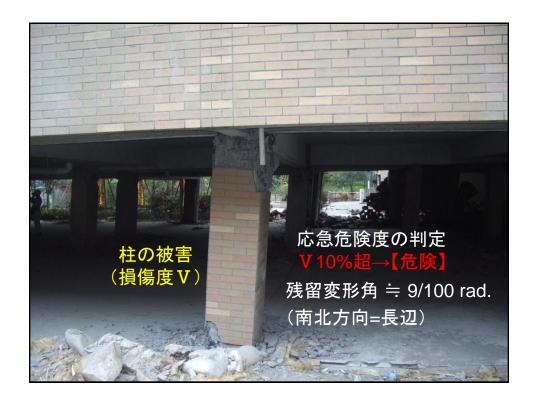
• 用 途 : 都江堰市の集合住宅

建設年:2008年(建設中・躯体は完成)

• 構造種別:鉄筋コンクリート構造

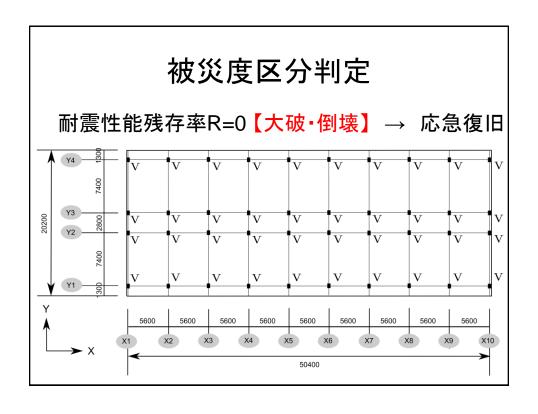
• 構造形式:鉄筋コンクリートラーメン造

2F~6Fのみレンガ造壁有り


• 各階面積:約1,000㎡(X=50.4m,Y=20.2m)

• 階 数 : 地上6階、地下無

• 階 高 : 2.85m

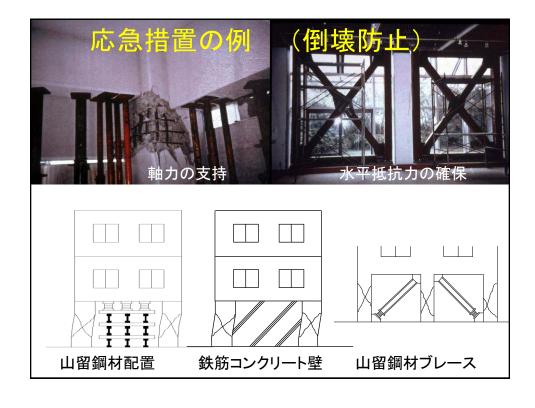


応急復旧の要否判定

被災度震度	軽微 R≧95	小破 95>R≧80	中破 80>R≧60	大破・倒壊 60>R
Ⅴ弱以下 (7)	×	×	×	×
V強 (8)	0	Δ	Δ	Δ
VI弱 (9)	0	Ο (Δ)	Δ	Δ
Ⅵ強以上 (10~)	0	©(O)	Ο(Δ)	Δ

調査建物

◎:軽微な補修


→ 継続使用

○:応急復旧(補修) → 継続使用

△:応急措置、応急復旧 → 原則、使用禁止

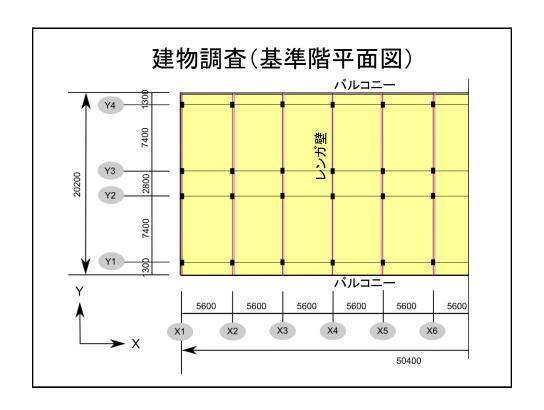
×:耐震診断を行い恒久復旧

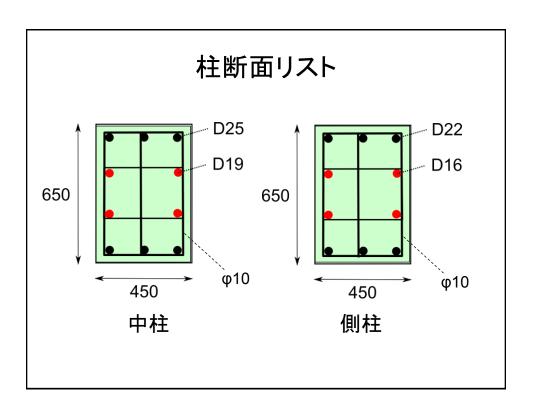
()は'71以前の建物

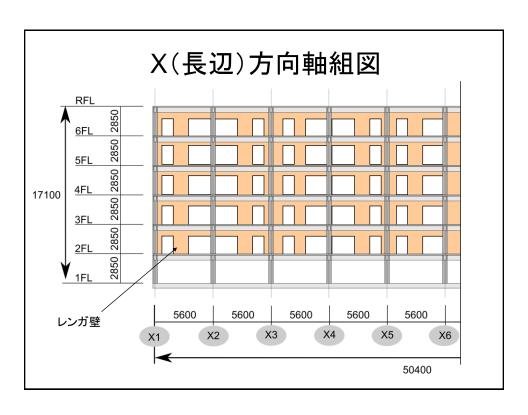
日本の耐震診断方法の適用例

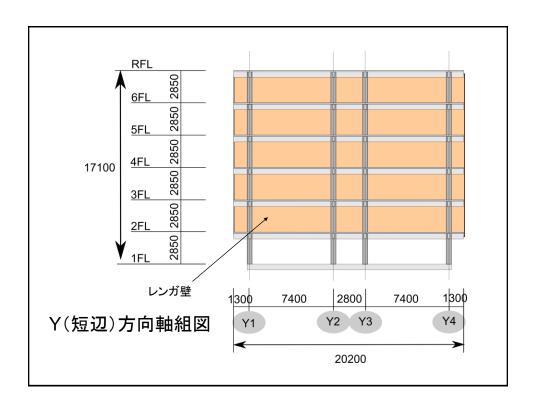
被災前の構造耐震指標Is

建物の現地調査(2008.6.22 都江堰市)


図面作成


荷重算定


強度指標Cと靭性指標Fの算定


 $Is = C \cdot F \cdot S_D \cdot T > 0.6 (日本の基準値 I_{so})$

 $C_T \cdot S_D > 0.3$

準備計算(荷重算定)

• 単位面積床重量(実際の荷重に基づく)

スラブ 120mm 24kN/m³ 2.9kN/m²

床仕上 80mm 24kN/m³ 1.9kN/m²

レンガ(空隙率0.5) 20kN/m³

壁仕上 50mm 20kN/m³ 3.2kN/m²(見付)

階高3m, 2枚/スパン5.6m 3.4kN/m²

積載荷重 0.8kN/m²

<u>柱自重 0.8kN/m²</u>

合計 9.8kN/m²→10kN/m²

建物重量

階	単位重量	床面積	Wi	ΣWi
	(kN/m²)	(m²)	(kN)	(kN)
6	10	1018	10180	10180
5	10	1018	10180	20360
4	10	1018	10180	30540
3	10	1018	10180	40720
2	10	1018	10180	50900
1	10	1018	10180	61080

1階の層せん断力係数 C_B =0.3とするとQ1=18324kN

1階柱の軸力

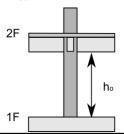
柱断面:BXD=450X650

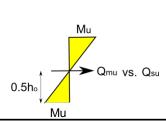
コンクリート圧縮強度: σ_B =30N/mm²

柱	単位 重量	床面積 (m²)	層数	軸力 (kN)	軸 応力度	軸力
	(kN/m^2)				(N/mm ²)	比
中柱	10	28.6	6	1714	5.9	0.2
側柱	10	28.0	6	1680	5.7	0.2

強度指標C

$$M_u = 0.8a_t \cdot \sigma_y \cdot D + 0.5ND \left(1 - \frac{N}{bDF_C}\right)$$


$$Q = M / (h / 2)$$


$$Q_{mu} = M_u/(h_o/2)$$

$$Q_{su} = \left\{ \frac{0.053p_t^{0.23} (18 + F_c)}{M/(Q \cdot d) + 0.12} + 0.85 \sqrt{p_w \cdot_s \sigma_{wy}} + 0.1\sigma_o \right\} b \cdot (0.8D)$$

$$Q_u = min(Q_{mu}, Q_{su})$$
 曲げとせん断の比較

$$C = Q_u / \Sigma W$$

強度指標Cと靭性指標F

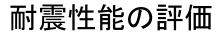
中柱の算定

曲げ終局時せん断強度 Q_{mu} = 457kN

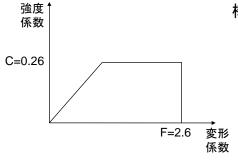
せん断終局強度 Q_{su} = 554kN

 $Qu = min(Q_{mu}, Q_{su}) = 457kN$

Qmu<Qsuより【曲げ柱】

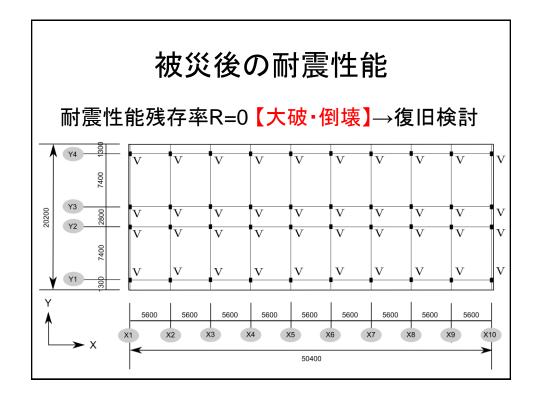

全体の強度指標C

 $C = Q_U / \Sigma W = 0.26(1 rmtext{ Momentum Proof of the Comparison of the Compariso$


靭性指標F = 2.6

降伏変形角Ry=1/150

終局変形角Ru=1/50



方向	階	С	F	C•F
X(長辺)	1	0.26	2.60	0.67

構造耐震指標

$$Is=Eo \cdot S_D \cdot T$$

=0.67 \cdot 1.0 \cdot 1.0
=0.67 > 0.6 (日本のIso)
 $C_T \cdot S_D = 0.26 < 0.3$

復旧措置後の耐震指標 RIs

部材の耐力回復係数 ψ

損傷度	Ψ	
П	0.95~1.0	
Ш	0.9~0.95(~1.0)	
IV	0.8~0.9(~1.0)	
V	0.7~0.8(~0.9)	

括弧()内は、工法の組合せ

※応急措置・復旧技術シートあり

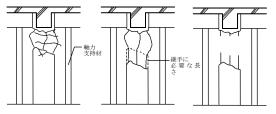
復旧例1

基本計画

被災前と同じ状態に建築物を復旧する

復旧手順

- ①1階柱の損傷により沈下した2階より上をジャッキアップして、 水平移動して1階柱の傾斜も修正する
- ②損傷が激しい1階柱柱頭・柱脚は、座屈した主筋は切断して交換する
 - ③コアコンクリートの打ち直し、エポキシ樹脂ひび割れ補修
 - ④せん断補強筋を交換して、コンクリートを打設


問題点

耐力は被災前の70%程度

ジャッキアップなどの難しい施工技術が必須

復旧例1(被災前に戻す)

復旧技術シート16

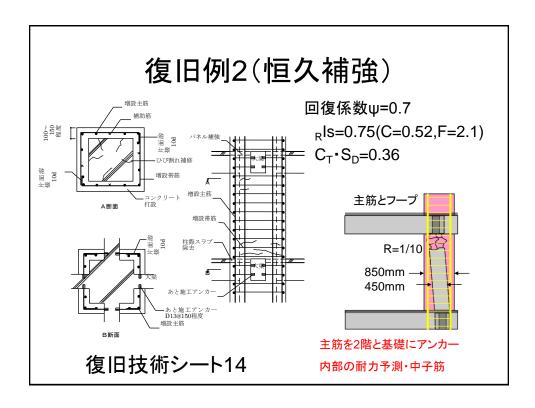
継手 新規 主筋 せん断 補強筋 回復係数ψ=0.7 _RIs=0.47 C_T•S_D=0.18

同じ規模の地震

倒壊の可能性

復旧例2

基本計画


被災前よりも曲げ耐力を上げる

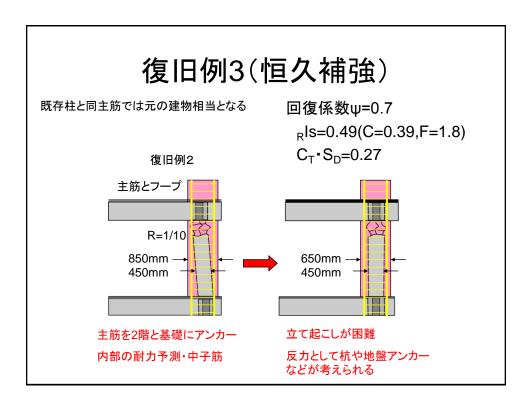
復旧手順

- ①残留変形を矯正せずに1階柱の外殻に主筋を配筋する。主筋を2階柱まで施工することで定着長を確保する
 - ②せん断補強筋を柱周囲に配置する
 - ③型枠を設置してコンクリートを打設する

問題点

残留変形角が大きいため、柱が太くなる 中子筋を配置できず、せん断破壊が先行する可能性がある

基本計画


復旧例1と2を組み合わせることで被災前の耐力を確保し断面 は復旧例2ほどは大きくしない

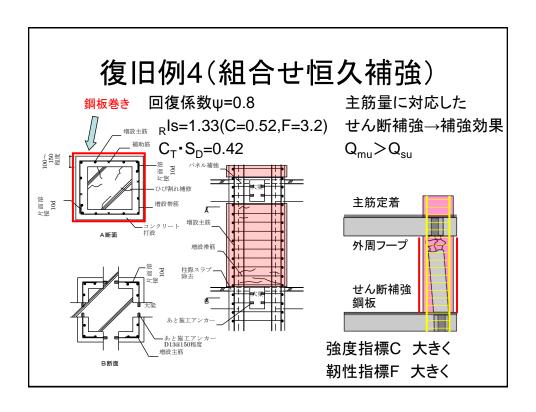
復旧手順

- ①復旧例1を用いて2階以上をジャッキにより支持し、水平移動し元の断面を修復する
- ②復旧例2を用いて主筋とせん断補強筋を配置して断面補強 する
 - ③型枠を設置してコンクリートを打設する

問題点

建物を水平移動するという施工が難しい

基本計画


曲げ強度を大きくするとともに、せん断強度も大きくなるように 補強し、強度指標Cと靭性指標Fの両者を大きくする

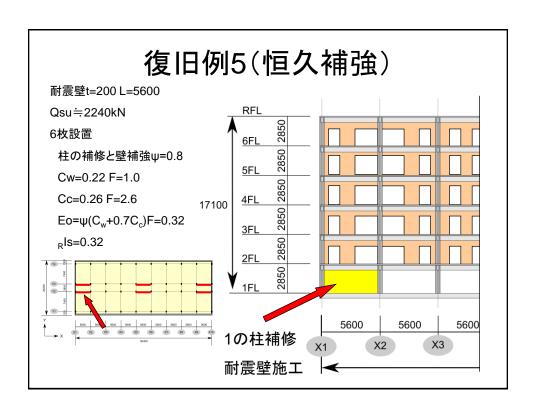
復旧手順

- ①復旧例3の型枠として恒久的な鋼板を用いる
- ②コンクリートを打設する

問題点

復旧コストが高い

基本計画


せん断耐力を大きくするために耐震壁を設置する。

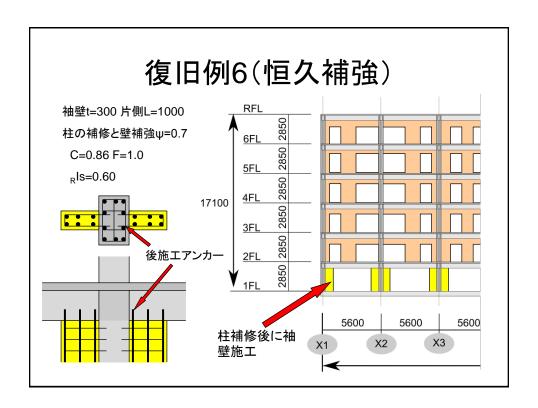
復旧手順

- ①柱の復旧補修を行う
- ②柱・梁にあと施工アンカーを打ち、壁筋を配筋する
- ③コンクリートを打設しフレームと壁を一体化する

問題点

スペースを区切ることになる

基本計画


袖壁を設置して柱の強度を大きくする

復旧手順

- ①柱の復旧補修(復旧例1)を行う
- ②柱・梁にあと施工アンカーを打ち、壁筋を配筋する
- ③コンクリートを打設しフレームと袖壁を一体化する

問題点

柱と袖壁の一体化とその評価方法が難しい

まとめ

被災した建物を実例とした日本の応急復旧技術を紹介した。ただし、1階のみを対象としている。

今回の復旧計画は、必ずしも実際の復旧に 最適ではないが、四川省(中国)で用いられ る材料、地域性、施工性などを考慮して意 見交換や技術交流を行うことで、より実用 的な復旧技術を確立することが可能と思わ れる